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Abstract
An effective Hamiltonian for a two-level system (TLS) which could model the interaction
between a tunneling proton and the conduction electrons of a metal is investigated in a
comparative way. In the conventional first-order Born approximation with plane waves, and for
small-distance displacement of the tunneling particle, a simple correlation between the atomic
motion and angular momentum change of the scattering electron is deduced. For such a
displacement, and within a distorted wave Born approximation for initial and final states, the
change in the scattering amplitude is expressed via bounded trigonometric functions of the
corresponding difference of scattering phase shifts. The numerical value of this amplitude
change is analyzed in the framework of a self-consistent screening description for an impurity
embedding in a paramagnetic electron gas. The coupling thus obtained of the tunneling proton
to a homogeneous electron gas is too weak to be in the range required for realization of the
two-channel Kondo effect.

1. Introduction

In the last few decades hydrogen in metals has deserved
very extensive experimental studies and vast theoretical
considerations. In crystalline solids the hydrogen (H) sits in a
well-defined interatomic position like, for example, in Pd or Pt.
That is not the case in amorphous systems and at dislocations
and other nonperiodic distortions. If the H has some more room
between the host atoms its position may not be well defined and
it moves between two positions. Such systems are known as
two-level systems (TLS) and they have been very extensively
studied [1]. The coupling to the conduction electrons can
result in an extra contribution to the electrical resistivity [2].
If the atom has two metastable positions the electron scattering
amplitude in different angular momentum channels depends on
the atomic position. The difference between these amplitudes
is described in the literature by a coupling V z . That coupling
contributes to the resistivity in a conventional way.

There are, however, other couplings where electrons
induce transitions between the two levels. Thus an assisted
transition can be realized by the tunneling of the atom between
the two positions [3–5]. The importance of that coupling,

denoted by V x and V y , is highly debated [6, 7]. These models
consider different atoms with sizable differences in their
masses. The original suggestion is limited to small tunneling
rate, while more intensive tunneling induces an essential split
between the energies of the atomic eigenstates which reduces
their roles. The model has attracted considerable interest as it
was suggested that at low temperature it exhibits the non-Fermi
liquid behavior known as the two-channel Kondo (2CK) effect,
which has its own theoretical interest [8, 9].

Experimental support comes much more from the studies
of point contacts than from direct measurement of the electrical
resistivity [8]. The Cornell group made a detailed suggestion
how the observed zero-bias anomalies could be due to that 2CK
effect, which has also been highly debated [6]. Since that time
the original model was modified [7] by taking into account
the actual electronic structure at the TLS. The possibility was
also considered [10] where the atom moves between the two
positions via the next higher energy level of the atomic motion.
These suggestions were aimed to increase the electron-assisted
amplitudes (V x , V y) to make the 2CK more feasible. The
enhancement of these couplings by the renormalization due
to the conduction electrons is driven by V z . The estimated
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Figure 1. Illustration of the two-level system. The shadowed circle
represents the screened proton in the central position and the two
others, separated by d , the TLS. The dashed lines correspond to the
spherical wave centered around the origin. The inset shows the
potential of the TLS.

couplings were on the borderline and therefore those should
be studied in more detail. It is crucial whether those coupling
strengths could reach certain regions which are very sensitive
to the strength of V z .

Motivated by this important role of a V z input to
dimensionless scaling equations, the present paper is devoted
to a consistent determination of its magnitude within scattering
theory. This is the main goal of our work, in which the
tunneling-related other couplings (and thus their feedback
effects in scalings) are not investigated. In order to achieve
this goal, we consider a heavy atom (hydrogen) which has two
stable positions (separated on the atomic scale) in a metallic
matrix due to a double potential well. The positions are
symmetric round a central point and they are at z = ± d

2 ,
respectively; see figure 1 for illustration. These positions are
described by a pseudospin σ z = ±1. As a possible application
of our work, the problem of zero-bias anomaly found [11] in
hydrogenated palladium contacts can be mentioned.

The general form of the Hamiltonian is H = H0 + H1,
where the diagonal H0 matrix stands for independent electrons
in stationary eigenstates of a self-consistent external field V (r)
generated by the embedded (at z = 0) particle in the electron
gas:

H0 =
∑

γ,σ

εγ a†
γσaγσ , (1)

in which the εγ are energy eigenvalues of bound and
scattering eigenstates. The a†

γσ and aγσ create and annihilate,
respectively, these eigenstates of equation (1) of spin σ . In
order to construct H1 in a physically consistent way in our
modeling, we shall consider (see section 2.2) a perturbation
[�V (r)] which is due to the shift in the atomic position.
We stress that, within the framework of such modeling, it is
customary in the TLS literature [5, 9, 10] to approximate the
scattering eigenstates by plane waves (pw). Based on this

a priori assumption (neglecting V (r) in H0) for initial and final
states, one can write H (pw)

1 as

H (pw)
1 = σ z 1

V

∑

q

V z
pw(q)

∑

p

b†
p+qbp, (2)

with the corresponding operators for the creation and
annihilation of plane-wave states. Here we have q = k2 − k1,
and thus V z

pw(q) is given by

V z
pw(q) =

∫
dr e−iq·r�V (r). (3)

Since the perturbation, �V (r), is real we have [V z
pw(q)]∗ =

V z
pw(−q), i.e. the H (pw)

1 is Hermitian. The scattering-amplitude

change is simply�Fz
pw(q) = [m/(2π h̄2)]V z

pw(q).
Of course, if the self-consistent external field, V (r), is not

weak one must calculate the corresponding scattering ampli-
tude change [�Fz(k2,k1)] by using properly defined [12, 13]
initial and final states instead of plane waves. The nontriv-
ial role of incorporating the static central potential in the elec-
tronic wavefunctions has already [10] been pointed out by ar-
guing that the effect of V (r) can be quite important. Namely,
the possible role of a renormalized density of states, ρ0 →
ρ0 cos2(δ0), in the final coupling is mentioned. In a similar
way, a possible double effect [7], i.e. the matrix element of a
potential gradient together with the square root of a modified
density of states, has also been discussed using an unscreened
Coulomb potential to calculate a matrix element (cf [13]).

In the present paper we implement the following
construction [4] for the interaction energy:

H1 = σ z 1

V

∑

k1k2

V z
k2k1

a†
k2σ

ak1σ, (4)

where the suitable coupling V z
k2k1

= ∑
αβ f ∗

β (k̂2)V
z
αβ(k1, k2)

fα(k̂1) is Hermitian. In this representation [4, 5, 9] the
flm(k̂) = i l

√
4πYlm(k̂) functions are spherical harmonics; α

and β run over a properly chosen set of angular momentum
indices (l,m). We note here for completeness that the magnetic
spin σ will play no direct role in the coupling to the TLS. It
plays the role of an additional channel index [9] required in a
two-channel Kondo model.

We determine, in a consistent manner, the change
[�Fz

αβ(k2,k1)] in the electron scattering amplitude in different
angular momentum channels when the screened heavy particle
is moved out from the central point to one of the two positions,
but the set of the electron wavefunctions is still centered
at the origin. These functions are calculated in a self-
consistent Hartree-like manner using density-functional theory
for a proton embedding in an electron gas of given density
n0. Thus the change in the scattering amplitude, due to a
potential displacement �V (r), is expressed in the distorted
wave Born approximation [12, 13] via matrix elements taken
between precalculated scattering eigenstates of H0. Then
we connect �Fz

αβ(k2,k1) with V z
αβ(k1, k2), considering the

required Hermitian character. In such a manner, we obtain a
bounded function for the dimensionless coupling in terms of

2



J. Phys.: Condens. Matter 21 (2009) 175701 I Nagy and A Zawadowski

scattering phase shifts determined self-consistently. This is our
main result in this work.

The rest of this paper is organized as follows. Section 2
contains our theory in the form of subsections organized
around the key elements of a consistent attempt. In order
to provide a clear phenomenology to the problem of a TLS
modeled by a mobile atom in a metallic system, the plane-
wave-based Born approximation, i.e. the basis of earlier
attempts [5, 9, 10] in V z estimations, is also discussed in a
comparative way. Section 3 is devoted to a short summary.
The appendix summarizes the elements of the tangent method
applied previously to the effect of strong scattering.

2. Theory and results

The present comparative study on a suitable [4] coupling is
carried out in several steps, as we mentioned above. In order
to get an a posteriori statement on the effect of the external
field, we start with the analysis of V (r) and its scattering
characteristics.

2.1. Calculations of the screened potential around the proton
and the phase shifts

The charge (Z ) is sitting in the central position where
its screened field V (r) and a complete set of one-electron
wavefunctions of occupied states are determined in a self-
consistent way by applying the Kohn–Sham method [15]
of density-functional theory (DFT) with the local-density
approximation (LDA) for the induced exchange–correlation
potential. Briefly, the single-particle potential energy V (r) has
a simple form in this approximation:

V (r) = − Ze2

r
+

∫
d3r′�n(r ′)

|r − r′| +�νxc[n(r)], (5)

in which �n(r) is the screening density. The many-body
term �νxc[n] is expressed via an input exchange–correlation
chemical potential (μxc) as �νxc[n] = μxc(n0 + �n) −
μxc(n0) in LDA. In our treatment we have a vanishing effective
potential energy at infinity.

For a given density (n0) of the screening environment, and
depending on the magnitude of the attractive embedded charge,
the total density consists of bound and scattering eigenstates.
The n(r) = n0 + �n(r) total density, the basic variable of
DFT, is constructed by summing over doubly occupied bound
and scattering-like states:

ψ±
k (r) = √

4π
∑

lm

Al(k)Rl(k, r)Y
∗
lm(r̂) flm(k̂), (6)

in which Rl(k, r) are solutions of the radial Kohn–Sham
equations with V (r) at (h̄k)2/2m scattering energy and
Al(k) = e±iδl(k), where δl(k) is the phase shift; flm(k̂)
was introduced in equation (4). The continuum states are
normalized on the k scale. Thus the scattering (sc) part of the
induced density comes from an integral over the Fermi–Dirac
distribution function:

�nsc(r) = 1

π2

∞∑

l=0

(2l +1)
∫ kF

0
dk k2[R2

l (k, r)− j 2
l (kr)]. (7)

Figure 2. Self-consistently determined radial wavefunctions,
R0(kF, r) and R1(kF, r), as a function of the radial distance r in
atomic units (au). Solid and dashed curves refer, respectively, to the
l = 0 and 1 components. The Wigner–Seitz parameter of the host
system is rs = 2.5 (au).

The total screening condition, 4π
∫ ∞

0 drr 2�n(r) = Z ,
implies the Friedel sum rule of scattering phase shifts in a one-
electron mean-field treatment:

Z = 2

π

∞∑

l=0

(2l + 1)δl(kF)− 2

π

∞∑

l=0

(2l + 1)δl(0)+ Nb. (8)

Here Nb denotes the number of occupied bound states, and in
a ground-state calculation the last two terms cancel each other
according to Levinson’s theorem. At metallic densities, the
first few phase shifts already provide a very accurate [16, 17]
approximation. For protons (Z = 1), at the rs = 2.5 value of
the density parameter one has δ0(kF) = 1.2213 and δ1(kF) =
0.0894. This rs value can characterize [18] the electron fluid of
a Pd metal.

Illustrative results are shown in figure 2 for the leading,
l = 0 and 1, radial wavefunctions calculated at the rs = 2.5
value of the Wigner–Seitz parameter. The l = 0 component
shows a remarkable Coulomb-like enhancement,

√
2π/kF, at

the origin r = 0, over the plane-wave-based unity. There are
marked deviations from the plane-wave components j0(kFr)
and j1(kFr), as figure 3 shows via the corresponding products
of components. Based on these important characteristics,
we can conclude that the attractive proton is a strong local
perturbation at metallic densities. This a posteriori conclusion
signals that the effect of V (r) in H0 is, in a treatment of
quantitative quality, not negligible.

Now, we connect the above local environment picture with
the proposal of Hopfield [19] for short-range properties when
there is a change in the potential due to moving an atom by a
small distance. It was shown that when an angular momentum
decomposition of electron wavefunctions is used, the matrix
elements contain chiefly scatterings which change the angular
momentum of the electron. Precisely, it is this character which
is central in the context of the scattering of electrons from two-
level systems. The parity change of the angular momentum
state, without altering the spin indices, of conduction electrons
gives them an internal degree of freedom coupled to that of
the impurity [4, 20]. This internal degree is the background

3
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Figure 3. Products of the leading partial waves as a function of r .
The solid and dashed curves correspond, respectively, to the
self-consistent R0(kF, r)R1(kF, r) and the perturbative
j0(kFr) j1(kFr). The Wigner–Seitz parameter of the host system is
rs = 2.5 (au).

to establish an analogy with the usual (spin-related, magnetic)
Kondo effect.

2.2. The change of the potential for d �= 0

As we explained in section 1, the screened charge is moved to
one of the positions σ z = ±1 carrying the potential, which
is taken rigid, as the screening action is very fast [21, 22]
compared to the infrared processes essential in some other
problems. The electron eigenfunctions are carried with the
tunneling atom, but they are decomposed in terms of those
that have already been determined for the central position with
V (r). The perturbing potential is defined as

σ z�V (r) = V (r)− V

(
r − σ z d

2
ẑ

)
(9)

and thus the important term in further discussion becomes

�V (r) ⇒ d

2

∂V (r)
∂rẑ

= d

2
cos θ

dV (r)

dr
, (10)

in the physically reasonable small-d limit. We illustrate the
self-consistent potential and its gradient in figure 4. The
products of −r V (r) and r 2[dV (r)/dr ] are plotted by solid
and dashed curves, respectively. The inset is devoted to the
finer details of these functions. The Coulombic character of
r 2[dV (r)/dr ] at short distance is due to a compensating effect
between the Hartree term and the exchange–correlation term
treated here within the LDA.

As a next step in our comparative study, perturbation the-
ories are applied in terms of �V (r). The matrix elements are
calculated between the states with wavefunctions ψ±

k (r) deter-
mined in section 2.1, but with the plane wavefunctions also pre-
sented to establish a proper phenomenology. In other words,
we use the distorted wave Born and the conventional (plane-
wave-based) Born approximations [12, 13], respectively.

Figure 4. Characteristics of the self-consistent potential obtained at
rs = 2.5 within DFT for the screening of a proton. The −r V (r) and
r 2[dV (r)/dr ] are plotted as a function of r by solid and dashed
curves, respectively. The inset is devoted to finer details for r > 3.
Atomic units are used.

2.3. Matrix elements of the shifted potential between the
original wavefunctions

In order to get a convenient, dimensionless [5] coupling to
characterize the effect of the perturbation we shall use energy
normalization [23] for scattering states:

ψE (r) = 1√
4π

√
2mk

π h̄2
ψk(r). (11)

The original matrix element at kF is multiplied in such a
way by the density of states ρ0(EF) = (kFm)/(2π2h̄2) =
0.75n0/EF per unit volume for a given spin evaluated at the
Fermi energy. Notice, once more, that the�Fz(k1,k2) change
in the scattering amplitude, i.e. the matrix element of the
perturbing �V (r) between ψ±

k (r) initial and final states [12]
of equation (6), should involve a m/(2π h̄2) prefactor. With
our �V (r) the angle integration over �r̂ gives, by applying
the standard recurrence relation for cos θYlm(θ, φ), the simple
result

I (l,m) =
∫

d�r̂ cos θYlm(r̂)Y
∗
l′m′(r̂) =

[
(l + 1)2 − m2

4(l + 1)2 − 1

]1/2

.

(12)
Only the l ′ = l + 1 and m ′ = m values are allowed, due to the
dipolar character.

Born approximation. Motivated by the previous [5, 9, 10]
TLS literature, and to get a further a posteriori statement,
first we study the case of a weak Vps(r) pseudo-potential
to equation (10). Thus, we perform the radial integration
in the matrix element determination by applying plane-wave
components for the free (cf equation (6)) radial wavefunctions
as

Ik(l) = 2m

h̄2

∫ ∞

0
drr 2 dVps(r)

dr
jl(kr) jl+1(kr), (13)

in the knowledge of the simple selection rule obtained above
in angle integration. In this perturbative case the integration by

4
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parts and use of the following expression based on recurrence
relations for Bessel functions:

d

dr
[r 2 jl(k1r) jl+1(k2r)] ≡ r 2[k2 j 2

l (k1r)− k1 j 2
l+1(k2r)],

(14)
results in a remaining integral with Vps(r). Now, we apply the
standard definition [12] of the first-order Born (B) phase shift:

δB
l (k) = −2mk

h̄2

∫ ∞

0
drr 2Vps(r) j 2

l (kr), (15)

to obtain the following informative (cf equation (18), below)
expression:

I B
k (l) = [δB

l (k)− δB
l+1(k)]. (16)

We stress that this equation is valid, physically, only for
small values of the phase shifts, i.e. when the distortion
of the electron wavefunction by the central potential field is
negligible. However, and this is the real message based on
the detailed algebra given above, the proposed correlation [4]
between the motion of the TLS atom and an angular
momentum change is transparent (α ⇒ l and β ⇒ (l + 1)
to equation (4)) already at the first-order Born level.

Beyond the first-order Born approximation. In a quite recent
theoretical work [7], which also rests on the matrix element
calculation with a potential gradient between normalized s and
p bound states, the bare [VC(r) = −Z/r ] Coulomb potential
was applied to characterize the TLS in a metallic matrix. Here,
using the η = Ze2m/(kh̄2) Sommerfeld parameter, we add
the corresponding exact phase shift difference for the case of a
Coulomb field:

δC
l (k)− δC

l+1(k) = arctan

[
η

(l + 1)

]
. (17)

It is to be noted at this point that, despite the simplicity of this
expression, the application of results based on a bare Coulomb
field has a limited validity in the problem under discussion
since the screening action of mobile electrons is important. On
the other hand, by using the accurate Rl(k, r) and Rl+1(k, r)
radial wavefunctions in the integration in equation (13) with
the gradient of the true V (r) behind these functions one still
obtains [24, 25] a closed

Ik(l) = sin[δl(k)− δl+1(k)] ≡ [tan δl(k)− tan δl+1(k)]
× cos δl(k) cos δl+1(k), (18)

expression in terms of scattering phase shifts. This exact result,
which now contains precisely the effect of the central potential
field at the level of self-consistency, is a bounded function in
contrast to equation (16). Of course, for small phase shifts
equation (18) reduces to the perturbative (plane-wave-based)
result given by equation (16).

We illustrate, in figure 5, the argument function
r 2 R0(kF, r)R1(kF, r)[dV (r)/dr ] of equation (13) by using the
self-consistent solutions at rs = 2.5. Fortunately, we have
already an analytic result in equation (18) for the integral.
Notice that a formal application of the standing wave boundary
condition (see the appendix) would result in the rhs of
equation (18) only with the difference of tangents due to the
standard eiδl (k) ⇒ 1/ cos δl(k) change in normalization.

Figure 5. Illustration of the integrand of equation (16) obtained by
using the self-consistent result for the potential gradient and the two
leading radial wavefunctions. The Wigner–Seitz parameter of the
host system is rs = 2.5. Atomic units are used.

2.4. Dimensionless matrix element and scattering-amplitude
change

After the derivation of �Fz
αβ(k1, k2) channel terms to the

total amplitude change, denoted as �Fz(k1,k2), we turn our
attention to the matrix element [4] needed (at the Fermi level)
for a suitable coupling introduced in equation (4). To find
the link, and follow our comparative method, first we give
a dimensionless expression which characterizes the partial
amplitude change:

� f z
αβ(kF) ≡ (kF/π)�Fz

αβ(kF)

= d

λB
I (l,m)IkF (l)Al+1(kF)Al(kF), (19)

in which λB = 2π h̄/pF for convenience, and α and
β refer (see above) to the (l,m) and (l + 1,m) values,
respectively. Next, following earlier works [4, 5, 9], we write a
dimensionless form for the Hermitian H1 in equation (4) as

vz
αβ(kF) ≡ ρ0(EF)V

z
αβ(kF). (20)

The obvious link is simply vz(B)
αβ (kF) = � f z(B)

αβ (kF) in the
plane-wave-based Born (B) approximation, since with plane
waves (pw) for initial and final states one has V z

pw(kF) ∼
�Fz

pw(kF) as we explained already for equation (3) in section 1.
This transparent connection between physical quantities

at the Fermi surface suggests us to use, beyond the weak
coupling limit above, the vz

αβ(kF) = Re� f z
αβ(kF) extension.

With our choice for boundary conditions to select initial and
final states, involved in matrix element calculation based on the
distorted wave Born method, this seems to be the only logical
step which preserves the important Hermitian character of H1

and reproduces the weak coupling limit. This extension is in
complete harmony with the standard textbook statement [26]
on an energy shift of a particle interacting with a potential. We
can write

Re� f z
00,10(kF) = 1√

3

d

λB
sin[δ0(kF)− δ1(kF)]

× cos[δ0(kF)+ δ1(kF)], (21)

5



J. Phys.: Condens. Matter 21 (2009) 175701 I Nagy and A Zawadowski

Im� f z
00,10(kF) = 1√

3

d

λB
sin[δ0(kF)− δ1(kF)]

× sin[δ0(kF)+ δ1(kF)] (22)

for the important real (Re) part and the imaginary (Im) part.
This latter is at least second order in a weak-perturbation
(Z → 0) limit.

The expression for the real part is the main result of
our comparative study. In contrast to the conventional Born
approximation, we have a bounded function in terms of self-
consistent phase shifts for the Hermitian coupling. In the
unitary limit, δ0(kF) ∼ π/2, where the effect of the self-
consistent central V (r) field is strong (see figures 2 and 3), the
influence of the potential shift [�V (r)] becomes very small,
i.e. vz

00,10(kF) is small. This observation is in accord with an
earlier conclusion [27] on a renormalized limit, obtained via
mapping to the partition function of an auxiliary logarithmic
gas, with contact interaction.

We note, finally, that the expression in equation (19) is
linear in d , since it is based on the leading-term expansion,
indicated in equation (10), for the perturbation. In order to
get a more detailed d dependence, we performed numerical
volume integrations with �V (r) from equation (9) and
the dominating R0(kF, r)Y00(r̂)R1(kF, r)Y10(r̂) product. By
introducing the notation

K z(d) ≡ |� f z
00,10(kF)|λB, (23)

and performing the θ integration via a variable change,
we have

K z(d) = 2
√

3

d2

∫ ∞

0
dr R0(kF, r)R1(kF, r)

×
∫ r+d/2

|r−d/2|
du uV (u)[r 2 + (d/2)2 − u2]. (24)

The numerical result for K z(d) is presented in figure 6 by
a solid curve. The dashed curve refers to the asymptotic
expansion, which is linear in d . The illustrative figure shows
that an asymptotic expansion provides a quite acceptable
representation up to about d � 0.5. Even at the physically
reasonable d = 1 maximal value for a shift, the deviation from
the numerical results is only about 25%.

The magnitude of |� f z
00,10(kF)| can be evaluated by using

our phase shifts at density parameter rs = 2.5, i.e. kF � 0.77,
and assuming d = 1 for the size of the TLS and then

|� f z
00,10(kF)| = kF

2π
K z(d = 1) � 0.05. (25)

This value is in accordance with the typical values estimated
earlier [2, 28] for different metallic glassy systems in
the intermediate coupling regions using data of ultrasound
measurements. Thus the coupling based on the present
nonperturbative treatment is too weak to be in the range
required (see the appendix) for the realization of the two-
channel Kondo effect.

Figure 6. Numerical result (solid curve) for K z(d), defined in
equation (27), as a function of (d/2). The dashed curve refers to the
asymptotic Taylor expansion which gives a linear dependence on d .
The Wigner–Seitz parameter of the host system is rs = 2.5. Atomic
units are used.

3. Summary

A dimensionless coupling constant that characterizes the effect
of a potential-gradient perturbation on scattering eigenstates
of a self-consistently treated embedded impurity is deduced
for small values of the impurity displacement d in metallic
electron gases. The result is expressed via bounded
trigonometric functions of scattering phase shift differences
at the Fermi energy. The bounded character for a residual
coupling shows that conventional, plane-wave-based, earlier
estimations for this coupling are of restricted validity. Our
main result, given by equations (20) and (21), can give a proper
phenomenology in the theory of the TLS problem.

Beyond the applied distorted wave Born approximation,
and with an axially symmetric scattering potential, the exact
description would lead to coupled radial equations [29] in
a partial wave expansion of the scattered wave at a given
k. The d dependence of the coupling could be an exciting
theoretical problem in such a treatment. Finally, a way
to consider electronic inhomogeneities in a real host could
be an additional local-density approximation. The strong
local distortion by an embedded proton may justify such an
approximation.
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Appendix. The tangent method

In the case of a contact V̄0δ(r) auxiliary interaction, which
gives a constant potential in momentum space, one has the
tan δ̄0 = −πρ0V̄0 simple form for the s-wave phase shift.
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The standing (st) wave solution of the underlying [30] tangent
method is given by

φst(kF, r) = 1

cos δ̄0

sin(kFr + δ̄0)

kFr
, (26)

while the solution with outgoing boundary condition has the
form of

ψ+(kF, r) = eiδ̄0
sin(kFr + δ̄0)

kFr
. (27)

The role of different normalizations, on which our previous
statement at equation (18) is based, is apparent in these
solutions.

The standard logic to determine a value of V̄0 is based on
the phase shift [δ0(k)] of the real potential [V0(r)], but the s-
channel contact interaction has an important limitation when
we apply it to the screening problem of a charge Z . It was
pointed out [31] that this model cannot supply enough charge
to shield the Coulomb field of the physically simplest impurity
Z = 1. A formal requirement of δ0(kF) = δ̄0 would result in
V̄0 → ∞, when the self-consistent [δ0(kF)] leading phase shift
(for Z = 1) goes to π/2.

The auxiliary contact potential was applied earlier [32]
in an opposite way, i.e. via a direct approximation (V̄0 ∼
d), for it to characterize the (constant) momentum-space
potential of an atomic displacement in a free electron gas.
In this case tan δ̄0 could measure a renormalized effect of a
prefixed V̄0, beyond the conventional (plane-wave-based) Born
approximation where δ̄(B)0 = −πρ0V̄0. As we mentioned in
section 1, a renormalized density of states [ρ0 → ρ0 cos2(δ̄0)]
could modify [10] the tan δ̄0 value. Its incorporation could
reduce the final coupling, in agreement with our main result
given by equations (20) and (21).

The direct approximation was implemented [7] earlier
as tan δ̄0 ≡ πvz with a dimensionless matrix element
[(vz/

√
ρ0) ∼ d] of the Coulomb potential gradient of an

embedded proton taken between the corresponding hydrogenic
(1s and 2p) bound states. The additional analysis, based on
nonperturbative scaling equations [33], shows that there is a
critical value (vz = 1/π ) for the input coupling. Only for a
higher vz could [14] the physics of the tunneling system be
dominated [7] by the two-channel Kondo fixed point.
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